
Managing ArcGIS Server
10.1 with Python

Spring NEARC - UMass Amherst
May 14, 2013

Sean Sweeney
City of Cambridge

@hiker4k

What I want to do

1. Stop all services then restart only those that
were previously started.

2. Stop a select list of services then restart
them.

Stop all services then restart only those that were previously started.

Stopping and starting through Manager is cumbersome for lots of services.

Sometimes we have services that are stopped for a reason, especially on our
development server. Keeping track of these while stopping and starting through
Manager is a pain.

Stop a select list of services then restart them.

We have five SDE databases. If we are doing maintenance on only one then we only
need to stop services that reference that one.

The "old" way of doing things
AGSSOM rover -list

Service Status:
MapServer 'AddressDashboard': Stopped
MapServer 'GISEmbeddedLayers': Started

AGSSOM rover -stop GISEmbeddedLayers

AGSSOM rover -start GISEmbeddedLayers

AGSSOM rover -stop '*all*'

http://arcscripts.esri.com/details.asp?dbid=16293

In 10.0 we used the AGSSOM ArcScript code and a patchwork of manual and
scripted steps.

http://arcscripts.esri.com/details.asp?dbid=16293
http://arcscripts.esri.com/details.asp?dbid=16293

10.1 Server command line utilities

Convert Cache Storage Format utility
Create Cache Schema utility
Create Service utility
Delete Cache utility
Manage Cache Tiles utility
Manage Service utility
Manage Site utility

http://resources.arcgis.com/en/help/main/10.1/index.html#//015400000626000000

In 10.1 ESRI has provided a set of Python scripts that tap into the REST Management
API..

The Manage Service utility (manageservice.py) provides most of the functionality of
the AGSSOM tools.

http://resources.arcgis.com/en/help/main/10.1/index.html#//015400000626000000
http://resources.arcgis.com/en/help/main/10.1/index.html#//015400000626000000

Manage Service
manageservice -s http://myserver:6080 -t -l -u xx -p xx

AddressDashboard.MapServer | STOPPED
GISEmbeddedLayers.MapServer | STARTED

manageservice -s http://myserver:6080 -t -o stop ^
-n GISEmbeddedLayers -u xx -p xx

manageservice -s http://myserver:6080 -t -o start ^
-n GISEmbeddedLayers -u xx -p xx

manageservice -s http://myserver:6080 -t -o stop ^
-n '*all*' -u xx -p xx

http://resources.arcgis.com/en/help/main/10.1/index.
html#/Manage_Service_utility/015400000625000000/

This covers many of our use cases, but it would still require some custom shell scripts
to do exactly what we want.

Most notably it doesn't have the "stop all" option.

These are Python scripts (using the Server ArcPy library) and can be mined for code.

http://resources.arcgis.com/en/help/main/10.1/index.html#/Manage_Service_utility/015400000625000000/
http://resources.arcgis.com/en/help/main/10.1/index.html#/Manage_Service_utility/015400000625000000/
http://resources.arcgis.com/en/help/main/10.1/index.html#/Manage_Service_utility/015400000625000000/

Administrator API for 10.1

http://resources.arcgis.com/en/help/server-admin-api/

The new ArcGIS Server Administrator API for 10.1 is a REST API that lets you do
your server management through HTTP.

One way to do this is through a browser, but a more powerful method is through a
language like Python. You could also use C#, PowerShell, or any other language that
supports HTTP.

When accessing the API through a browser you get the default Administrator
Directory, which is an HTML interface to the API.

http://resources.arcgis.com/en/help/server-admin-api/
http://resources.arcgis.com/en/help/server-admin-api/

Making the request in code

Python HTTPLIB
Connect to URL and post parameters
httpConn = httplib.HTTPConnection(serverName, serverPort)
httpConn.request("POST", tokenURL, body, headers)

Read response
response = httpConn.getresponse()

The Python library httplib can be used to make http requests and receive responses
from the remote server. These responses can then be further processed in the code.

ESRI Example Scripts

ESRI has many example scripts in the Resource Center. These can be used as-is or
mined for code/technique.

Relevant Examples:
● Stop or start all services in a folder
● Check a folder for stopped services

http://resources.arcgis.com/en/help/main/10.1/index.html#/Example_Stop_or_start_all_services_in_a_folder/0154000005qv000000/
http://resources.arcgis.com/en/help/main/10.1/index.html#/Example_Stop_or_start_all_services_in_a_folder/0154000005qv000000/
http://resources.arcgis.com/en/help/main/10.1/index.html#/Example_Check_a_folder_for_stopped_services/0154000005tr000000/
http://resources.arcgis.com/en/help/main/10.1/index.html#/Example_Check_a_folder_for_stopped_services/0154000005tr000000/

Using the API

1. Get token
A function to generate a token given username,
password and the adminURL.
def getToken(username, password, serverName, serverPort):
 tokenURL = "/arcgis/admin/generateToken"

 return token['token']

Token:
1wGGKgBFJuHLDwqABHTfUKYabhIs6mhcnQOuHAjlpLa8HWJkorLfwkFttqOdI5ik

This is the equivalent to logging on in the web interface.

ESRI has provided a function in the documentation to do this, which I copied into my
library (agsextras.py).

From the documentation:

The token does not last forever; it is designed to time out so that it cannot be stolen and
used indefinitely by a malicious user. You have to request a new token each time you run
your script (but not each time you make a request).

http://resources.arcgis.com/en/help/main/10.1/index.html#/Scripting_with_the_ArcGIS_Server_Administrator_API/0154000005r1000000/

Using the API

2. Create the POST message body
The requests used below only need the token and the response
formatting parameter (json)
body = urllib.urlencode({'token': token, 'f': 'json'})

token=1wGGKgBFJuHLDwqABHTfUKYabhIs6mhcnQOuHAjlpLa8HWJkorLfwkFttqOdI5ik
&f=json

The message body for the POST request is quite simple for these requests. You only
need to provide the token and specify the output format. Here we use JSON as the
output format (f) so the results can be easily processed by the script. The default is
HTML for the Administrator Directory.

Using the API

3. Create headers
The request headers are also fixed
headers = {"Content-type": "application/x-www-form-urlencoded",
"Accept": "text/plain"}

The headers for this request are also quite simple. We are treating the request like a
URL encoded form request.

Using the API

4. Create URL
Construct URL to get the status, then make the request
reqURL = "/arcgis/admin/services/" + folder + fullSvcName + "/stop"

http://myserver:6080/arcgis/admin/services/MyMap.MapServer/stop

The URL (minus the server and port number) points directly to the operation we want
to perform on our resource.

REST APIs consist of resources and operations to perform on resources. In this case
the resource is MyMap.MapServer and the operation is Stop.

Using the API

5. Send request (part 1)
def sendRequest(serverName, serverPort, reqURL, body, headers):
 httpConn = httplib.HTTPConnection(serverName, serverPort)
 httpConn.request("POST", reqURL, body, headers)

 # Read response
 response = httpConn.getresponse()
 if (response.status != 200):
 httpConn.close()
 raise RequestException('Invalid response from request.')

To send the request, create a new instance of the HTTPConnection object for the
server and port provided, then use this object to post the request using the
parameters gathered previously.

The HTTP response from the server can be checked for errors using the
getresponse() method.

Using the API

5. Send request (part 2)
 respData = response.read()

 # Done with the connection - close before error checking
 httpConn.close()

 # Check that data returned is not an error object
 if not assertJsonSuccess(respData):
 raise JsonErrorException(str(respData))

 # Deserialize response into Python object
 data = json.loads(respData)
 return data

If there are no HTTP errors, close the connection and parse the JSON response for
errors. The assertJsonSuccess() function is copied from the ESRI samples.

If there are no JSON errors, parse the response data into a Python object for further
processing.

My library (agsextras.py)
Function to parse the command line and return the standard arguments
def getArgs(parser):

A function to generate a token given username, password and the adminURL.
TODO: Refactor to use sendRequest function
def getToken(username, password, serverName, serverPort):

Define some custom exception classes for sendRequest
This will help us distinguish any errors on the calling side
class RequestException(Exception):
class JsonErrorException(Exception):

Perform a request
def sendRequest(serverName, serverPort, reqURL, body, headers):

A function that checks that the input JSON object
is not an error object.
def assertJsonSuccess(data):

Serialize a list to disk
def saveList(data,filename):

Read a serialized list from disk
def readList(filename):

I created my own library of functions and classes for use in these scripts called
agsextras.py. Some of these were lifted from the ESRI sample scripts (getToken(),
assertJsonSuccess()) and the others were created to simplify and consolidate my
scripts.

My scripts

agsstopallstarted
agsstopfromlist
agsstatusfromlist
agsstartfromlist

-s server
-u user
-p password
-f filename

So far I have created four scripts:

1. agsstopallstarted.py - stops all services that are currently started and writes an
output file with a list of the services that were stopped.
2. agsstopfromlist.py - stops all services listed in a file.
3. agsstatusfromlist.py - gets the status of all the services listed in a file.
4. agsstartfromlist.py - starts all services listed in a file.

There are four common command line arguments for these scripts:

1. Server - Name of the server
2. User - Username for login
3. Password - Password for login
4. Filename - Filename for outputting or inputting the list of services

If the username and password are not provided the user will be prompted. If the
filename is not provided a default filename will be used.

Future enhancements

1. Add folder support
2. More consolidation?
3. Refactor all http code to urllib(2)?

1. Right now the tools only support the root Server folder. Support for other folders is
left to a future enhancement.

2. Some of the scripts are almost completely the same source-wise and could
probably be consolidated for easier maintenance. For example, agsstartfromlist and
agsstopfromlist are the same except for one variable name and the actual operation
performed (start vs. stop).

3. The consensus on the Web seems to be to use urllib2 in favor of httplib where
possible as a best practice. This will require some more investigation but on the
surface appears to be doable.

More info

These slides:
http://goo.gl/0AQa9

The scripts:
https://github.com/cambridgegis/ags-tools

Both links tweeted to @hiker4k with #nearc

http://goo.gl/0AQa9
http://goo.gl/0AQa9
https://github.com/cambridgegis/ags-tools
https://github.com/cambridgegis/ags-tools

Setting up the Python environment

This is a lot of typing:

C:\Python27\ArcGISx6410.1\python.exe ^
"C:\Program Files\ArcGIS\Server\tools\admin\managesite.py"
^
-u admin -p admin -s http://myserver:6080 -t -lc

Setting up the Python environment

A few simple settings can make your life a lot easier when working with Python from
the command line.

1. Add python.exe to Windows path
SET PATH=%PATH%;C:\Python27\ArcGISx6410.1

C:\Python27\ArcGISx6410.1\python.exe ^
"C:\Program Files\ArcGIS\Server\tools\admin\managesite.py"
^
-u admin -p admin -s http://myserver:6080 -t -lc

OR

python.exe ^
"C:\Program Files\ArcGIS\Server\tools\admin\managesite.py"
^
-u admin -p admin -s http://myserver:6080 -t -lc

Setting up the Python environment

1. Add python.exe to Windows Path

In PowerShell:

$env:Path+= ";C:\Python27\ArcGISx6410.1“

In cmd.exe:

SET PATH=%PATH%;C:\Python27\ArcGISx6410.1

2. Copy ArcServer scripts locally

C:\Program Files\ArcGIS\Server\tools\admin\

Setting up the Python environment

2. Add ArcServer scripts to your local computer

Copy:

C:\Program Files\ArcGIS\Server\tools\admin\

from your ArcGIS Server server to the same location on your desktop computer.

3. Run Python scripts directly
SET PATHEXT=%PATHEXT%;.PY
SET PATH=%PATH%;"C:\Program
Files\ArcGIS\Server\tools\admin"

python.exe ^
"C:\Program Files\ArcGIS\Server\tools\admin\managesite.py"
^
-u admin -p admin -s http://myserver:6080 -t -lc

OR

managesite -u admin -p admin -s http://myserver:6080 -t -
lc

Setting up the Python environment

3. Run Python scripts directly from the command line

In PowerShell:

$env:pathext += ';.PY'
$env:Path += ';C:\Program
Files\ArcGIS\Server\tools\admin'

In cmd.exe:

SET PATHEXT=%PATHEXT%;.PY
SET PATH=%PATH%;"C:\Program
Files\ArcGIS\Server\tools\admin"

4. Create your own Python library
SET PYTHONPATH=%PYTHONPATH%;"C:\Python27\Cambridge"
SET PATH=%PATH%;"C:\Python27\Cambridge"

Then:

import agssextras

And:

agsstopallstarted -s myserver -u admin -p admin -f srv.txt

Setting up the Python environment

4. Create your own Python library

In PowerShell:

$env:PythonPath += ';C:\Python27\Cambridge'
$env:Path += ';C:\Python27\Cambridge'

In cmd.exe:

SET PYTHONPATH=%PYTHONPATH%;"C:\Python27\Cambridge"
SET PATH=%PATH%;"C:\Python27\Cambridge"

Then:

import agssextras

Parsing arguments in Python
Command line args
import argparse

Function to parse the command line and return the standard arguments
def getArgs(parser):
 parser.add_argument('-s', '--server', required=True, help='Server name')
 parser.add_argument('-u', '--user', required=False, help='User name')
 parser.add_argument('-p', '--password', required=False, help='Password')
 parser.add_argument('-f', '--filename', required=False, help='Output file name',
 default=environ['TEMP'] + '\\agsstarted.txt')

 args = parser.parse_args()

 # Prompt for username if not provided
 if not args.user:
 args.user = raw_input("Enter user name: ")

 # Prompt for password using getpass if not provided
 if not args.password:
 args.password = getpass.getpass("Enter password: ")

 return args

The Python built-in argparse module can be used to easily parse command line
arguments.

Use the add_argument method to add your arguments, set them as required or
optional, set help, and set default.

The parse_args() method takes care of the rest. The returned object will have an
attribute for each defined argument that was found during the parsing using the long
name if it's defined (args.filename for --filename).

There are many more options for creating arguments. This is a fairly simple
implementation. See the documentation for details.

http://docs.python.org/dev/library/argparse.html

It's important to note that using the ArcGIS Server Administrator API does not

require any Esri software on the machine from which you run the script. All you

need is an environment where you can make HTTP requests to your GIS server.

- http://resources.arcgis.com/en/help/main/10.1/index.

html#/Scripting_with_the_ArcGIS_Server_Administrator_API/0154000005r1000000/

This is true, but if you want to take advantage of the work they've already done you

need their libraries. Desktop install is good enough as it includes the server arcpy

library: C:\Program Files (x86)\ArcGIS\Desktop10.1\arcpy_server_admin.

http://resources.arcgis.com/en/help/main/10.1/index.html#/Scripting_with_the_ArcGIS_Server_Administrator_API/0154000005r1000000/
http://resources.arcgis.com/en/help/main/10.1/index.html#/Scripting_with_the_ArcGIS_Server_Administrator_API/0154000005r1000000/
http://resources.arcgis.com/en/help/main/10.1/index.html#/Scripting_with_the_ArcGIS_Server_Administrator_API/0154000005r1000000/

