Managing ArcGIS Server
10.1 with Python

Spring NEARC - UMass Amherst
May 14, 2013

Sean Sweeney
City of Cambridge
@hikerdk

What | want to do

1. Stop all services then restart only those that
were previously started.

2. Stop a select list of services then restart
them.

Stop all services then restart only those that were previously started.
Stopping and starting through Manager is cumbersome for lots of services.
Sometimes we have services that are stopped for a reason, especially on our
development server. Keeping track of these while stopping and starting through
Manager is a pain.

Stop a select list of services then restart them.

We have five SDE databases. If we are doing maintenance on only one then we only
need to stop services that reference that one.

" L1 H H
The "old" way of doing things
AGSSOM rover -list
Service Status:
MapServer 'AddressDashboard': Stopped
MapServer 'GISEmbeddedLayers': Started
AGSSOM rover -stop GISEmbeddedLayers

AGSSOM rover -start GISEmbeddedLayers

AGSSOM rover -stop '*all*'

http://arcscripts.esri.com/details.asp?dbid=16293

In 10.0 we used the AGSSOM ArcScript code and a patchwork of manual and
scripted steps.

http://arcscripts.esri.com/details.asp?dbid=16293
http://arcscripts.esri.com/details.asp?dbid=16293

10.1 Server command line utilities

Manage Service utility

http://resources.arcgis.com/en/help/main/10.1/index.html#//015400000626000000

In 10.1 ESRI has provided a set of Python scripts that tap into the REST Management
APIL..

The Manage Service utility (manageservice.py) provides most of the functionality of
the AGSSOM tools.

http://resources.arcgis.com/en/help/main/10.1/index.html#//015400000626000000
http://resources.arcgis.com/en/help/main/10.1/index.html#//015400000626000000

Manage Service

manageservice -s http://myserver:6080 -t -1 -u xx -p XX

AddressDashboard.MapServer | STOPPED
GISEmbeddedLayers.MapServer | STARTED

manageservice -s http://myserver:6080 -t -o stop "
-n GISEmbeddedlLayers -u XX -p XX

manageservice -s http://myserver:6080 -t -o start *
-n GISEmbeddedLayers -u xX -p XX

manageservice -s http://myserver:6080 -t -o stop "
-n '*all*' -u xxX -p XX

http://resources.arcgis.com/en/help/main/10.1/index.
html#/Manage Service utility/015400000625000000/

This covers many of our use cases, but it would still require some custom shell scripts
to do exactly what we want.

Most notably it doesn't have the "stop all" option.

These are Python scripts (using the Server ArcPy library) and can be mined for code.

http://resources.arcgis.com/en/help/main/10.1/index.html#/Manage_Service_utility/015400000625000000/
http://resources.arcgis.com/en/help/main/10.1/index.html#/Manage_Service_utility/015400000625000000/
http://resources.arcgis.com/en/help/main/10.1/index.html#/Manage_Service_utility/015400000625000000/

Administrator API for 10.1
€ ArcGIS Server Administrat x | [—_

€« C' [} ssweeneylaptop:6080/arcgis/admin

ArcGIS Server Administrator Directory

Home

You should use ArcGIS Server Manager for i services and GIS servers.
The Admini i isi for ad d ic access to the server, likely through the use of scripts.

Site Root - /

Current Version: 10.1.1
Resources: machines clusters services security system data uploads logs kml info publicKey

Supported Operations: generateToken
Supported Interfaces: REST

http://resources.arcgis.com/en/help/server-admin-api/

The new ArcGIS Server Administrator API for 10.1 is a REST API that lets you do
your server management through HTTP.

One way to do this is through a browser, but a more powerful method is through a
language like Python. You could also use C#, PowerShell, or any other language that
supports HTTP.

When accessing the API through a browser you get the default Administrator
Directory, which is an HTML interface to the API.

http://resources.arcgis.com/en/help/server-admin-api/
http://resources.arcgis.com/en/help/server-admin-api/

Making the request in code

Python HTTPLIB

httpConn = httplib.HTTPConnection (serverName, serverPort)
httpConn.request (, tokenURL, body, headers)

response = httpConn.getresponse ()

The Python library httplib can be used to make http requests and receive responses
from the remote server. These responses can then be further processed in the code.

Resource Center
L e
Scripting ArcGIS Server administration
| Scripting with the ArcGIS Server Administra
Scripting with the ArcGIS Server Adm

Scripting languages and the ArcGIS ¢

[5] Example: Create a site
Example: Join a machine to a site
Example: Start the geometry service
Example: Stop or start all services in
Example: Check a folder for stopped | |
Example: Write properties of all servi|
Example: Edit service properties
Example: Publish a service with detai
Example: Query the ArcGIS Server g

Example: Write requested map exten
Example: Create users and roles fror|
Example: Create users and roles fror|
Example: Apply permissions to a sen|

Example: Apply service permissions f|

Example: Derive map service statistic|z| -

Example: Prevent data copying atpu

|y Scripting service publishing with ArcPy

ESRI Example Scripts

ArcGIS Help 10.1

Example: Stop or start all services in a folder

Services » ArcGIS for Serv

dows) » Administering ArcGIS for Server » Scripting ArcGIS Server administration

This example reads through a specified GIS server folder and stops or starts all services cor
user-supplied parameter. If the user attempts to start a service that is already started, or stoy
stopped, the script proceeds to the next service in the folder.

When running this script, you are asked to provide a user name and password that has adm
ArcGIS Server. With this information, a token is retrieved that allows you to make web servic
stop and start the services

You are also asked to provide the server name, as well as the folder whose services should
can supply root for the root folder, although be aware that iterating through the root folder w
geometry and search services

A final parameter asks whether you want to stop or start all the services in the folder. The we
start a service using the ArcGIS Server Administrator API are very similar, so it's not difficult
script.

When the initial request is made for the list of services in the folder, the response comes bac
Notation (JSON). Python's json.loads() function converts the JSON to a Python object throug

Although this script has some error checking and reporting, other checks have been left out {

Demonstrates how to stop or start all services in a folder

For Http calls
import httplib, urllib, json

ESRI has many example scripts in the Resource Center.

mined for code/technique.

Relevant Examples:

° Stop or start all services in a folder

° Check a folder for stopped services

These can be used as-is or

http://resources.arcgis.com/en/help/main/10.1/index.html#/Example_Stop_or_start_all_services_in_a_folder/0154000005qv000000/
http://resources.arcgis.com/en/help/main/10.1/index.html#/Example_Stop_or_start_all_services_in_a_folder/0154000005qv000000/
http://resources.arcgis.com/en/help/main/10.1/index.html#/Example_Check_a_folder_for_stopped_services/0154000005tr000000/
http://resources.arcgis.com/en/help/main/10.1/index.html#/Example_Check_a_folder_for_stopped_services/0154000005tr000000/

Using the API

1. Get token

] KL,
def getToken (username, password, serverName, serverPort):
tokenURL =

return token|]

Token:
1wGGKgBFJuHLDwgABHT fUKYabhIsémhcnQOuHAjlpLa8HWJIkorLfwkFttgOdISik

This is the equivalent to logging on in the web interface.

ESRI has provided a function in the documentation to do this, which | copied into my
library (agsextras.py).

From the documentation:

The token does not last forever; it is designed to time out so that it cannot be stolen and
used indefinitely by a malicious user. You have to request a new token each time you run
your script (but not each time you make a request).

http://resources.arcgis.com/en/help/main/10.1/index.html#/Scripting_with_the_ArcGIS_Server_Administrator_API/0154000005r1000000/

Using the API

2. Create the POST message body

The requests used below only need the token and the respons
formatting parameter (json

body = urllib.urlencode ({ : token, : 1)

token=1wGGKgBFJuHLDwgABHTfUKYabhIs6émhcnQOuHAjlpLa8HWIkorLfwkFttgOdISik
&f=json

The message body for the POST request is quite simple for these requests. You only
need to provide the token and specify the output format. Here we use JSON as the
output format (f) so the results can be easily processed by the script. The default is
HTML for the Administrator Directory.

Using the API

3. Create headers

The request headers are also fixed

headers = {

The headers for this request are also quite simple. We are treating the request like a
URL encoded form request.

Using the API

4. Create URL

nstruct URL to get the status, 2 ke he re

+ folder + fullSvcName +

/arcgis/admin/services/MyMap .MapServer/stop

The URL (minus the server and port number) points directly to the operation we want
to perform on our resource.

REST APIs consist of resources and operations to perform on resources. In this case
the resource is MyMap.MapServer and the operation is Stop.

Using the API

5. Send request (part 1)

def sendRequest (serverName, serverPort, reqURL, body, headers):
httpConn = httplib.HTTPConnection (serverName, serverPort)

httpConn.request (, reqURL, body, headers)
response = httpConn.getresponse ()
if (response.status != 200):

httpConn.close ()
raise RequestException ()

To send the request, create a new instance of the HTTPConnection object for the
server and port provided, then use this object to post the request using the
parameters gathered previously.

The HTTP response from the server can be checked for errors using the
getresponse() method.

Using the API

5. Send request (part 2)

respData = response.read()

httpConn.close ()
assertJsonSuccess (respData) :
raise JsonErrorException (str (respData))

if not

Deserialize response into Python obj

data = json.loads (respData)
return data

If there are no HTTP errors, close the connection and parse the JSON response for
errors. The assertJsonSuccess() function is copied from the ESRI samples.

If there are no JSON errors, parse the response data into a Python object for further
processing.

My library (agsextras.py)

def getArgs (parser):

def getToken (username, password, serverName, serverPort):

class RequestException (Exception):
class JsonErrorException (Exception):

def sendRequest (serverName, serverPort, reqURL, body, headers):

def assertJsonSuccess (data):

def savelist(data,filename) :

def readList(filename) :

| created my own library of functions and classes for use in these scripts called
agsextras.py. Some of these were lifted from the ESRI sample scripts (getToken(),
assertJsonSuccess()) and the others were created to simplify and consolidate my
scripts.

My scripts

agsstopallstarted
agsstopfromlist

agsstatusfromlist
agsstartfromlist

-S server
-u user

-p password
-f filename

So far | have created four scripts:

1. agsstopallstarted.py - stops all services that are currently started and writes an
output file with a list of the services that were stopped.

2. agsstopfromlist.py - stops all services listed in a file.

3. agsstatusfromlist.py - gets the status of all the services listed in a file.

4. agsstartfromlist.py - starts all services listed in a file.

There are four common command line arguments for these scripts:

1. Server - Name of the server

2. User - Username for login

3. Password - Password for login

4. Filename - Filename for outputting or inputting the list of services

If the username and password are not provided the user will be prompted. If the
filename is not provided a default filename will be used.

Future enhancements

1. Add folder support
2. More consolidation?
3. Refactor all http code to urllib(2)?

1. Right now the tools only support the root Server folder. Support for other folders is
left to a future enhancement.

2. Some of the scripts are almost completely the same source-wise and could
probably be consolidated for easier maintenance. For example, agsstartfromlist and
agsstopfromlist are the same except for one variable name and the actual operation
performed (start vs. stop).

3. The consensus on the Web seems to be to use urllib2 in favor of httplib where
possible as a best practice. This will require some more investigation but on the
surface appears to be doable.

More info

These slides:
http://goo.gl/0AQa9

The scripts:
https://qgithub.com/cambridgeqgis/ags-tools

Both links tweeted to @hikerdk with #nearc

http://goo.gl/0AQa9
http://goo.gl/0AQa9
https://github.com/cambridgegis/ags-tools
https://github.com/cambridgegis/ags-tools

Setting up the Python environment
This is a lot of typing:

C:\Python27\ArcGISx6410.1\python.exe "
"C:\Program Files\ArcGIS\Server\tools\admin\managesite.py"

-u admin -p admin -s http://myserver:6080 -t -lc

Setting up the Python environment

A few simple settings can make your life a lot easier when working with Python from
the command line.

1. Add python.exe to Windows path

SET PATH=%PATH%;C:\Python27\ArcGISx6410.1

S \Python27\AreGTSw6410 1\python.exe

"C:\Program Files\ArcGIS\Server\tools\admin\managesite.py"

-u admin -p admin -s http://myserver:6080 -t -1lc

OR

A

python.exe
"C:\Program Files\ArcGIS\Server\tools\admin\managesite.py"

A

-u admin -p admin -s http://myserver:6080 -t -1lc

Setting up the Python environment
1. Add python.exe to Windows Path
In PowerShell:
Senv:Path+= ";C:\Python27\ArcGISx6410.1"
In cmd.exe:

SET PATH=%PATH%;C:\Python27\ArcGISx6410.1

2. Copy ArcServer scripts locally

C:\Program Files\ArcGIS\Server\tools\admin\

Setting up the Python environment
2. Add ArcServer scripts to your local computer
Copy:
C:\Program Files\ArcGIS\Server\tools\admin\

from your ArcGIS Server server to the same location on your desktop computer.

3. Run Python scripts directly

SET PATHEXT=%PATHEXTS%; .PY
SET PATH=%PATHS%;"C:\Program
Files\ArcGIS\Server\tools\admin"

python—exe——
"G\ Program Files\ArcCIS\Server\t 1 admin\managesite—py"

A

-u admin -p admin -s http://myserver:6080 -t -1lc
OR

managesite -u admin -p admin -s http://myserver:6080 -t -
1lc

Setting up the Python environment

3. Run Python scripts directly from the command line

In PowerShell:

Senv:pathext += ';.pPY'
Senv:Path += ';C:\Program
Files\ArcGIS\Server\tools\admin'

In cmd.exe:

SET PATHEXT=%PATHEXT%; .PY
SET PATH=%PATHS%;"C:\Program
Files\ArcGIS\Server\tools\admin"

4. Create your own Python library

SET PYTHONPATH=%$PYTHONPATHS%; "C:\Python27\Cambridge"
SET PATH=%PATH%;"C:\Python27\Cambridge"

Then:

import agssextras
And:

agsstopallstarted -s myserver -u admin -p admin -f srv.txt

Setting up the Python environment
4. Create your own Python library
In PowerShell:

$Senv:PythonPath += ';C:\Python27\Cambridge'
Senv:Path += ';C:\Python27\Cambridge'

In cmd.exe:

SET PYTHONPATH=%PYTHONPATH%; "C:\Python27\Cambridge"
SET PATH=%PATH%;"C:\Python27\Cambridge"

Then:

import agssextras

Parsing arguments in Python

import argpa

def getArgs (parser):

parser.add_argument (, required= ue, help=)
parser.add_argument (, required=False, help=)
parser.add_argument (, required=False, help=)
parser.add_argument (, required=False, help=

’
default=environ| 1+)
args = parser.parse_args()
if not args.user:

args.user = raw input ()

if not args.password:
args.password = getpass.getpass()

return args

The Python built-in argparse module can be used to easily parse command line
arguments.

Use the add_argument method to add your arguments, set them as required or
optional, set help, and set default.

The parse_args() method takes care of the rest. The returned object will have an
attribute for each defined argument that was found during the parsing using the long
name if it's defined (args.filename for --filename).

There are many more options for creating arguments. This is a fairly simple
implementation. See the documentation for details.

http://docs.python.org/dev/library/argparse.html

Scripting with the ArcGIS Server Administrator API

Senvices » ArcGIS for Server (Windows) » Administering ArcGIS for Server » Scripting ArcGIS Server administration

ArcGIS Server is administered purely through RESTful web service requests to the Administrator API. (Even when you use
ArcGIS Server Manager to administer your server, calls to the Administrator API are being made on the back end.) To write
scripts that administer ArcGIS Server, you need to choose a scripting language that allows you to construct URLs, make HTTP
requests, and parse HTTP responses. The examples in this help system use Python

It's important to note that using the ArcGIS Server Administrator APl does not require any Esri software on the machine from
which you run the script. All you need is an environment where you can make HTTP requests to your GIS server.

Getting started with the ArcGIS Server Administrator API

To use the Administrator AP, you create an HTTP request for the operation you want to perform and include the required
parameters for that operation. For example, the following HTTP request joins a new machine to your site:

http://MyServer:6080/arcgis/admin/machines/registermachineName=SERVERI.DOMAIN.COMadminURL

A simple way to familiarize yourself with the administrative operations available and their required parameters is to use the
ArcGIS Server Administrator Directory.

Using the Administrator Directory

The ArcGIS Server Administrator Directory is a web application that can help you write administrative scripts for ArcGIS
Server. The Administrator Directory is typically available at http://<server name=:6080/arcgis/admin.

Think of the Administrator Directory as a road map to ArcGIS Server resources exposed through the Administrator API. You
can navigate the links in the Administrator Directory to learn which URLs and parameters to use in your administrative web
service requests. You can then formulate these requests and send them over HTTP using a scripting language of your choice.

Try using the Administrator Directory to perform an administrative task. Note the parameters you are required to enter, and
examine the URL in your browser's address bar as you make the request to the server. Web developer tools such as Fiddler
or Firebug can be useful to see the full body of the request and response. This information is extremely valuable when you're
attempting to construct your own administrative HTTP requests through Python or another scripting language.

It's important to note that using the ArcGlIS Server Administrator APl does not
require any Esri software on the machine from which you run the script. All you
need is an environment where you can make HTTP requests to your GIS server.

- http://resources.arcgis.com/en/help/main/10.1/index.
html#/Scripting_with_the_ArcGIS_Server_Administrator_API1/0154000005r1000000/

This is true, but if you want to take advantage of the work they've already done you
need their libraries. Desktop install is good enough as it includes the server arcpy
library: C:\Program Files (x86)\ArcGIS\Desktop10.1\arcpy_server_admin.

http://resources.arcgis.com/en/help/main/10.1/index.html#/Scripting_with_the_ArcGIS_Server_Administrator_API/0154000005r1000000/
http://resources.arcgis.com/en/help/main/10.1/index.html#/Scripting_with_the_ArcGIS_Server_Administrator_API/0154000005r1000000/
http://resources.arcgis.com/en/help/main/10.1/index.html#/Scripting_with_the_ArcGIS_Server_Administrator_API/0154000005r1000000/

